

Doc. No. 894 Revision 1 Date: 7/9/2012 Page 1 of 6

Functional Requirement Specification

Project X Radio Frequency Quadrupole

Prepared by: S. Nagaitsev, R. Kephart	Fermilab	nsergei@fnal.gov
Approved by: V. Lebedev, CW Linac Scientist	Fermilab AD	val@fnal.gov
Approved by: R. Stanek, PXIE Lead Engineer	Fermilab Directorate	rstanek@fnal.gov
Approved by: R. Kephart, SRF Director. PX CW Linac	Fermilab Directorate	kephart@fnal.gov
Approved by: S. Nagaitsev, Project Scientist	Fermilab Project X	nsergei@fnal.gov
Approved by: M. Kaducak, Project X Project Engineer	Fermilab Project X	mkaducak@fnal.gov
Approved by: S. Holmes, Project X Project Manager	Fermilab Project X	holmes@fnal.gov

Doc. No. 894 Revision 1 Date: 7/9/2012 Page 2 of 6

Revision History

Revision	Date	Section	Revision Description
		No.	
0	1/4/2012	All	Initial Release.
1	7/9/2012	0,2,4	Changed Project Engineer. Removed no beam vacuum specification and
			adjusted alpha parameters specification. Removed statement about limit to average current in downstream linac.
2	10/3/2012	4	Changed description of 50 C nominal temperature and added nominal cooling
			water temperature requirement.

Doc. No. 894 Revision 1 Date: 7/9/2012 Page 3 of 6

TABLE OF CONTENTS

1.	Introduction	. 4
2.	Scope	. 4
3.	Key Assumptions, Interfaces & Constraints	. 4
	Requirements	
5.	References	. 6

Doc. No. 894 Revision 1 Date: 7/9/2012 Page 4 of 6

1. Introduction:

Project X is a high intensity proton facility conceived to support a world-leading physics program at Fermilab.[1] Project X will provide high intensity beams for neutrino, kaon, muon, and nuclei based experiments and for studies supporting energy applications. The Project X Injector Experiment (PXIE) will be a prototype Front End linear accelerator,[2] that will validate the concept for the Project X front end, thereby minimizing a large portion of the technical risk within Project X.

The PXIE Radio Frequency Quadrupole (RFQ) accepts the beam at 30 keV as it exits the LEBT[3] and accelerates it to 2.1MeV where it is transferred to the Medium Energy Beam Transport (MEBT) section.[4] This specification includes the beam physics, physical size limitations, RF requirements, alignment, vacuum, and cooling requirements.

2. Scope:

The PXIE RFQ includes all of the beamline components necessary to accelerate and focus the beam from the exit of the LEBT to the entrance of the MEBT. The overall layout of the PXIE components is shown in Figure 1.

FIGURE 1: Major Subsystem in the PXIE Linac

The RFQ will operate with continuous wave RF power and support peak currents of 5mA. A future upgrade path for Project X envisions operations with RFQ beam current as high as 10 mA, so this should be planned for to the extent possible. The RFQ beam pipe will be maintained at high vacuum and terminated by "particle free" beam vacuum valves at the upstream and downstream ends. Mean-Time-Between-Failure and Mean-Time-to-Repair are important design considerations for the RFQ. It is desirable that some maintenance operations be possible "in situ", namely without removing the RFQ from its installed position.

3. Key Assumptions, Interfaces & Constraints:

The RFQ will be installed initially in the PXIE facility at NML. The RFQ will be included in the overall layout, and will conform to FNAL Engineering[5] and ES&H Standards.[6] All interfaces (e.g. power, instrumentation, vacuum) will be further discussed and agreed upon by the PXIE Project Scientist.

Doc. No. 894 Revision 1 Date: 7/9/2012 Page 5 of 6

4. Requirements

emittance value.

Table 1. RFQ Requirements

Physical		
	Beamline height from the floor	1.3 m
	Overall width	≤1.4 m
	Overall length (flange-to-flange)	≤4.55 m
	Overall height (from floor)	≤2.00 m
Beam		
	Ion type	H-
	Input beam parameters	Matched to LEBT at 5 mA
	Nominal Input energy (kinetic)	30 (+/- 0.5%) keV
	Nominal output energy (kinetic)	2.1 (+/- 1%) MeV
	Nominal Beam Current	5 mA
	Beam Current Operating Range	1- 10 mA
	Transmission efficiency (1-10 mA)	95%
	Transverse emittance (normalized, rms) over 1-10 mA Operating Current Range	< 0.25 mm mrad
	Longitudinal emittance (rms): over 1-10 mA Operating Current Range	0.8 – 1.0 eV-μs
	Output beam parameters at 5 mA beam current	$ \alpha_{\rm x} $ < 0.2
		$ \alpha_{\rm y} $ < 0.2
		$ \alpha_{\rm z} $ < 0.1
Alignment		
	Max transverse position error (X,Y) at upstream and downstream beam flange	0.1 mm
	Max longitudinal position error (Z)	2 mm
RF		
	Frequency	162.5 MHz
	Duty factor (CW)	100%
	Total RF power for resistive losses and beam loading	<130 kW
	Peak RFQ copper temperature at full power	~50 C
	Nominal cooling water temperature	30 C
Vacuum		
	Operating pressure	$< 5 \times 10^{-7} $ torr
*		L

^{*} The rms emittance is defined using the moments of the particle distribution in phase space (e.g. x - x') as follows: $\mathcal{E}_x = \left(\overline{x^2} \overline{x'^2} - \overline{x} \overline{x'}^2\right)^{1/2}$. In modeling, it is based on 100% of particles; in experiments, it may be based on a truncated number of particles (95-100%) to reduce the effect of far tails on the calculated

[&] To express the longitudinal rms emittance in mm-mrad, multiply it by $(M_pc)^{-1}$, 0.32 mm-mrad/(µs-eV) for protons and H⁻ ions.

Doc. No. 894 Revision 1 Date: 7/9/2012 Page 6 of 6

5. References:

Documents with reference numbers listed are in the Project X DocDB: http://projectx-docdb.fnal.gov

[1] Project X Functional Requirements Specification

Document #: Project-X-doc-658

[2] Project X Injector Experiment Functional Requirements Specification

Document #: Project-X-doc-980

[3] PXIE LEBT Functional Requirements Specification

Document #: Project-X-doc-912

[4] PXIE MEBT Functional Requirements Specification

Document #: Project-X-doc-938

[5] Fermilab Engineering Manual

 $http://www.fnal.gov/directorate/documents/FNAL_Engineering_Manual_REVISED_070810.pdf$

[6] Fermilab ES&H Manual

http://www-esh.fnal.gov/pls/default/esh_home_page.page?this_page=15053